FANDOM


EL PROBLEMAEditar

La empresa el SAMÁN Ltda. Dedicada a la fabricación de muebles, ha ampliado su producción en dos líneas más. Por lo tanto actualmente fabrica mesas, sillas, camas y bibliotecas. Cada mesa requiere de 2 piezas rectangulares de 8 pines, y 2 piezas cuadradas de 4 pines. Cada silla requiere de 1 pieza rectangular de 8 pines y 2 piezas cuadradas de 4 pines, cada cama requiere de 1 pieza rectangular de 8 pines, 1 cuadrada de 4 pines y 2 bases trapezoidales de 2 pines y finalmente cada biblioteca requiere de 2 piezas rectangulares de 8 pines, 2 bases trapezoidales de 2 pines y 4 piezas rectangulares de 2 pines. Cada mesa cuesta producirla $10000 y se vende en $ 30000, cada silla cuesta producirla $ 8000 y se vende en $ 28000, cada cama cuesta producirla $ 20000 y se vende en $ 40000, cada biblioteca cuesta producirla $ 40000 y se vende en $ 60000. El objetivo de la fábrica es maximizar las utiliidades.

1430076260

PASO 1: MODELACIÓN MEDIANTE PROGRAMACIÓN LINEAL Editar

Las variables:

X1 = Cantidad de mesas a producir (unidades)

X2 = Cantidad de sillas a producir (unidades)

X3 = Cantidad de camas a producir (unidades)

X4 = Cantidad de bibliotecas a producir (unidades)

Las restricciones:

2X1 + 1X2 + 1X3 + 2X4 <= 48               

2X1 + 2X2 + 1X3 <= 20                     

2X3 + 2X4 <= 8                            

4X4 <= 8                          

La función Objetivo:

ZMAX = 20000X1 + 20000X2 + 20000X3 + 20000X4

PASO 2: CONVERTIR LAS INECUACIONES EN ECUACIONES Editar

En este paso el objetivo es asignar a cada recurso una variable de Holgura, dado que todas las restricciones son "<=".

2X1 + 1X2 + 1X3 + 2X4 + 1S1 + 0S2 + 0S3 + 0S4 = 48               

2X1 + 2X2 + 1X3 + 0X4 + 0S1 + 1S2 + 0S3 + 0S4 = 20                             

0X1 + 0X2 + 2X3 + 2X4 + 0S1 + 0S2 + 1S3 + 0S4 = 8

0X1 + 0X2 + 0X3 + 4X4 + 0S1 + 0S2 + 0S3 + 1S4 = 8

De esta manera podemos apreciar una matriz identidad (n = 4), formado por las variables de holgura las cuales solo tienen coeficiente 1 en su respectivo recurso, por el ejemplo la variable de holgura "S1" solo tiene coeficiente 1 en la restricción correspondiente a el recurso 1.

La función objetivo no sufre variaciones:

ZMAX = 20000X1 + 20000X2 + 20000X3 + 20000X4

PASO 3: DEFINIR LA SOLUCIÓN BÁSICA INICIAL Editar

El Método Simplex parte de una solución básica inicial para realizar todas sus iteraciones, esta solución básica inicial se forma con las variables de coeficiente diferente de cero (0) en la matriz identidad.

1S1 = 48               

1S2  = 20                              

1S3 = 8

1S4  = 8

PASO 4: DEFINIR LA TABLA SIMPLEX INICIAL Editar

Solución: (segundo término): En esta fila se consigna el segundo término de la solución, es decir las variables, lo más adecuado es que estas se consignen de manera ordenada, tal cual como se escribieron en la definición de restricciones.
Método-simplex
Cj: La fila "Cj" hace referencia al coeficiente que tiene cada una de las variables de la fila "solución" en la función objetivo.

Variable Solución: En esta columna se consigna la solución básica inicial, y a partir de esta en cada iteración se van incluyendo las variables que formarán parte de laggggggggggg solución final.

Cb: En esta fila se consigna el valor que tiene la variable que se encuentra a su derecha "Variable solución" en la función objetivo.

Zj: En esta fila se consigna la contribución total, es decir la suma de los productos entre término y Cb.

Cj - Zj: En esta fila se realiza la diferencia entre la fila Cj y la fila Zj, su significado es un "Shadow price", es decir, la utilidad que se deja de recibir por cada unidad de la variable correspondiente que no forme parte de la solución.
Método-simplex (1)

Solución inicial:

Editar

PASO 5: REALIZAR LAS ITERACIONES NECESARIAS Editar

Este es el paso definitivo en la resolución por medio del Método Simplex, consiste en realizar intentos mientras el modelo va de un vértice del poliedro objetivo a otro.

El procedimiento a seguir es el siguiente:

1. Evaluar que variable entrará y cual saldrá de la solución

Método-simplex (2)

2. El hecho de que una variable distinta forme parte de las variables solución implica una serie de cambios en el tabulado Simplex, cambios que se explicarán a continuación.

- Lo primero es no olvidar el valor del "a" correspondiente a la variables a entrar, en este caso el "a = 4".

Método-simplex-0
Método-simplex (1)-0
Método-gráfico
De esta manera se culmina la primera iteración, este paso se repetirá cuantas veces sea necesario y solo se dará por terminado el método según los siguientes criterios
Maximizar Minimizar
Solución Óptima Cuando todos los Cj - Zj sean <= 0 Cuando todos los Cj - Zj sean >= 0
  • Continuamos con las iteraciones para lo cual tenemos que repetir los pasos anteriores.
1416591138
  • En esta última iteración podemos observar que se cumple con la consigna Cj - Zj <= 0, para ejercicios cuya función objetivo sea "Maximizar", por ende hemos llegado a la respuesta óptima.

X1 = 3

X2 = 4

X3 = 6

X4 = 4

Con una utilidad de: $ 340000

Sin embargo una vez finalizado el Método Simplex se debe observar una matriz identidad en el rectángulo determinado por las variables de decisión, el hecho de que en este caso no se muestre la matriz identidad significa que existe una solución óptima alterna.

Método-simplex-1

La manera de llegar a la otra solución consiste en alterar el orden en que cada una de las variables entro a la solución básica, recordemos que el proceso fue decidido al azar debido a la igualdad en el Cj - Zj del tabulado inicial. Aquí les presentamos una de las maneras de llegar a la otra solución.

1416591163

Podemos observar como existe una solución óptima alternativa en la cual la combinación de variables es distinta y existe un menor consumo de recursos, dado que el hecho de que se encuentre la variable "S1" en la solución óptima con un coeficiente de "3" significa que se presenta una holgura de 3 unidades del recurso (pieza rectangular de 8 pines).

X1 = 0 (Cantidad de mesas a producir = 0)

X2 = 7 (Cantidad de sillas a producir = 7)

X3 = 6 (Cantidad de camas a producir = 6)

X4 = 4 (Cantidad de bibliotecas a producir = 4)

S1 = 3 (Cantidad de piezas rectangulares de 8 pines sin utilizar =3)

Con una utilidad de: $ 340000

El contenido de la comunidad está disponible bajo CC-BY-SA a menos que se indique lo contrario.